Epidemiology
Cancer epidemiology is the study of the incidence of cancer as a way to infer possible trends and causes. The first such cause of cancer was identified by British surgeon Percivall Pott, who discovered in 1775 that cancer of the scrotum was a common disease among chimney sweeps. The work of other individual physicians led to various insights, but when physicians started working together they could make firmer conclusions.
A founding paper of this discipline was the work of Janet Lane-Claypon, who published a comparative study in 1926 of 500 breast cancer cases and 500 control patients of the same background and lifestyle for the British Ministry of Health. Her ground-breaking work on cancer epidemiology was carried on by Richard Doll and Austin Bradford Hill, who published "Lung Cancer and Other Causes of Death In Relation to Smoking. A Second Report on the Mortality of British Doctors" followed in 1956 (otherwise known as the British doctors study). Richard Doll left the London Medical Research Center (MRC), to start the Oxford unit for Cancer epidemiology in 1968. With the use of computers, the unit was the first to compile large amounts of cancer data. Modern epidemiological methods are closely linked to current concepts of disease and public health policy. Over the past 50 years, great efforts have been spent on gathering data across medical practise, hospital, provincial, state, and even country boundaries, as a way to study the interdependence of environmental and cultural factors on cancer incidence.
Cancer epidemiology must contend with problems of lead time bias and length time bias. Lead time bias is the concept that early diagnosis may artificially inflate the survival statistics of a cancer, without really improving the natural history of the disease. Length bias is the concept that slower growing, more indolent tumors are more likely to be diagnosed by screening tests, but improvements in diagnosing more cases of indolent cancer may not translate into better patient outcomes after the implementation of screening programs. A similar epidemiological concern is overdiagnosis, the tendency of screening tests to diagnose diseases that may not actually impact the patient's longevity. This problem especially applies to prostate cancer and PSA screening.[87]
Some cancer researchers have argued that negative cancer clinical trials lack sufficient statistical power to discover a benefit to treatment. This may be due to fewer patients enrolled in the study than originally planned.[88]
State and regional cancer registries are organizations that abstract clinical data about cancer from patient medical records. These institutions provide information to state and national public health groups to help track trends in cancer diagnosis and treatment. One of the largest and most important cancer registries is SEER, administered by the US Federal government.[89] Health information privacy concerns have led to the restricted use of cancer registry data in the United States Department of Veterans Affairs[90][91][92] and other institutions.[93]
In some Western countries, such as the USA,[4] and the UK[94] cancer is overtaking cardiovascular disease as the leading cause of death. In many Third World countries cancer incidence (insofar as this can be measured) appears much lower, most likely because of the higher death rates due to infectious disease or injury. With the increased control over malaria and tuberculosis in some Third World countries, incidence of cancer is expected to rise; this is termed the epidemiologic transition in epidemiological terminology.
Cancer epidemiology closely mirrors risk factor spread in various countries. Hepatocellular carcinoma (liver cancer) is rare in the West but is the main cancer in China and neighbouring countries, most likely due to the endemic presence of hepatitis B and aflatoxin in that population. Similarly, with tobacco smoking becoming more common in various Third World countries, lung cancer incidence has increased in a parallel fashion.
History
Today, the Greek term carcinoma is the medical term for a malignant tumor derived from epithelial cells. It is Celsus who translated carcinos into the Latin cancer, also meaning crab. Galen used "oncos" to describe all tumours, the root for the modern word oncology.[95]
Hippocrates described several kinds of cancers. He called benign tumours oncos, Greek for swelling, and malignant tumours carcinos, Greek for crab or crayfish. This name comes from the appearance of the cut surface of a solid malignant tumour, with the veins stretched on all sides as the animal the crab has its feet, whence it derives its name[96] (see picture). He later added the suffix -oma, Greek for swelling, giving the name carcinoma. Since it was against Greek tradition to open the body, Hippocrates only described and made drawings of outwardly visible tumors on the skin, nose, and breasts. Treatment was based on the humor theory of four bodily fluids (black and yellow bile, blood, and phlegm). According to the patient's humor, treatment consisted of diet, blood-letting, and/or laxatives. Through the centuries it was discovered that cancer could occur anywhere in the body, but humor-theory based treatment remained popular until the 19th century with the discovery of cells.
Our oldest description and surgical treatment of cancer was discovered in Egypt and dates back to approximately 1600 B.C. The Papyrus describes 8 cases of ulcers of the breast that were treated by cauterization, with a tool called "the fire drill." The writing says about the disease, "There is no treatment."[97]
Another very early surgical treatment for cancer was described in the 1020s by Avicenna (Ibn Sina) in The Canon of Medicine. He stated that the excision should be radical and that all diseased tissue should be removed, which included the use of amputation or the removal of veins running in the direction of the tumor. He also recommended the use of cauterization for the area being treated if necessary.[98]
In the 16th and 17th centuries, it became more acceptable for doctors to dissect bodies to discover the cause of death. The German professor Wilhelm Fabry believed that breast cancer was caused by a milk clot in a mammary duct. The Dutch professor Francois de la Boe Sylvius, a follower of Descartes, believed that all disease was the outcome of chemical processes, and that acidic lymph fluid was the cause of cancer. His contemporary Nicolaes Tulp believed that cancer was a poison that slowly spreads, and concluded that it was contagious.[99]
With the widespread use of the microscope in the 18th century, it was discovered that the 'cancer poison' spread from the primary tumor through the lymph nodes to other sites ("metastasis"). This view of the disease was first formulated by the English surgeon Campbell De Morgan between 1871 and 1874.[100] The use of surgery to treat cancer had poor results due to problems with hygiene. The renowned Scottish surgeon Alexander Monro saw only 2 breast tumor patients out of 60 surviving surgery for two years. In the 19th century, asepsis improved surgical hygiene and as the survival statistics went up, surgical removal of the tumor became the primary treatment for cancer. With the exception of William Coley who in the late 1800s felt that the rate of cure after surgery had been higher before asepsis (and who injected bacteria into tumors with mixed results), cancer treatment became dependent on the individual art of the surgeon at removing a tumor. During the same period, the idea that the body was made up of varous tissues, that in turn were made up of millions of cells, laid rest the humor-theories about chemical imbalances in the body. The age of cellular pathology was born.
When Marie Curie and Pierre Curie discovered radiation at the end of the 19th century, they stumbled upon the first effective non-surgical cancer treatment. With radiation came also the first signs of multi-disciplinary approaches to cancer treatment. The surgeon was no longer operating in isolation, but worked together with hospital radiologists to help patients. The complications in communication this brought, along with the necessity of the patient's treatment in a hospital facility rather than at home, also created a parallel process of compiling patient data into hospital files, which in turn led to the first statistical patient studies.
Cancer patient treatment and studies were restricted to individual physicians' practices until World War II, when medical research centers discovered that there were large international differences in disease incidence. This insight drove national public health bodies to make it possible to compile health data across practises and hospitals, a process that many countries do today. The Japanese medical community observed that the bone marrow of bomb victims in Hiroshima and Nagasaki was completely destroyed. They concluded that diseased bone marrow could also be destroyed with radiation, and this led to the discovery of bone marrow transplants for leukemia. Since WWII, trends in cancer treatment are to improve on a micro-level the existing treatment methods, standardize them, and globalize them as a way to find cures through epidemiology and international partnerships.
Research
Cancer research is the intense scientific effort to understand disease processes and discover possible therapies. The improved understanding of molecular biology and cellular biology due to cancer research has led to a number of new, effective treatments for cancer since President Nixon declared "War on Cancer" in 1971. Since 1971 the United States has invested over $200 billion on cancer research, that total includes money invested by public and private sectors and foundations.[101]
from wikipedia.org
Iscriviti a:
Commenti sul post (Atom)
1 commento:
I was diagnosed with stage 3 breast cancer in August 2010. A valuable friend told me about Dr. Itua Herbal Center in West Africa. She gave me her phone number and email address. I quickly contacted him to guarantee that his herbal medicines will heal my cancer and I will heal forever I said OK.I ask him what is the healing process, he asks me to pay the fees I did and within 7 working days he sent me the herbal medicine and then he asked me I told my friend Gomez about the herbal drug so that he gave me to go and drink it.So after drinking for two weeks, I was cured, I am so grateful and I promise that I will do it I recommend to anyone who has cancer and that that I am doing. Herbal medicine Dr. Itua makes me believe that there is hope for people with Parkinson's disease, schizophrenia, scoliosis, bladder cancer, colorectal cancer, breast cancer, kidney cancer. , Leukemia, lung cancer, skin cancer, uterine cancer, prostate cancer Fibromyalgia, a
Fibrodysplasia Syndrome, Epilepsy,Sclerosis sickness, Dupuytren's Disease, Diabetes, Celiac Disease, Angiopathy, Ataxia, Arthritis, Amyotrophic Lateral Sclerosis, Alzheimer's Disease, Lupus, Adrenocortic Carcinoma.Asthma, Allergic Diseases.HIV Help, Bladder cancer,Brain cancer,
?Esophageal cancer,?Gallbladder cancer,Gestational trophoblastic disease,Head and neck cancer,?Hodgkin lymphoma
?Intestinal cancer,Liver cancer,Melanoma,Mesothelioma,?Multiple myeloma,?Neuroendocrine tumors
Non-Hodgkin lymphoma,Cervical Cancer,Oral cancer,Ovarian cancer,?Sinus cancer,Soft tissue sarcoma,Spinal cancer,Stomach cancer
,Testicular cancer,Throat cancer,Thyroid Cancer,?Vaginal cancer,?Vulvar cancer
HIV Aids, Herpes, Disease Chronic inflammatory, Memory disorder,
Here is his contact information ...... [Email ... drituaherbalcenter@gmail.com. Whatsapp ... + 2348149277967]
Posta un commento